Basics: Difference between revisions

From ECGpedia
Jump to navigation Jump to search
 
(187 intermediate revisions by 23 users not shown)
Line 1: Line 1:
=Introduction=
{{nav|
[[Image:nsr.png|thumb| A short ECG registration of normal heart rhythm (sinus rhythm)]]
|previouspage=Introduction
The aim of this course is to understand and recognize the normal ECG and to be able to interprete abnormalities. The course is divided in different sections. First the basics will be presented. This is followed by the interpretation of the normal ECG. Then abnormalities are discussed: ([[ischemia]], [[arrhythmias]] and [[Miscellaneous]]).
|previousname=Introduction
Finally the real world is presented in [[practice|practice ECGs]].
|nextpage=Rhythm
|nextname=Step 1: Rhythm
}}
{{authors|
|mainauthor= [[user:Vdbilt|I.A.C. van der Bilt, MD]]
|supervisor=
|coauthor=
|moderator= [[user:Vdbilt|I.A.C. van der Bilt, MD]]
|editor= 
}}
==How do I begin to read an ECG?==
{{multiple image
| align    = right
| direction = horizontal
| width    = 200


The American College of Cardiology has published a '''list of [[ACC list|abnormalities a professional should be able to recognise]]'''. It is advisable to go through this list at the end of this course in order to recognise areas that need your attention.
| image1    = nsr.png
{{clr}}
| caption1  = A short ECG registration of normal heart rhythm (sinus rhythm)


=How do I begin reading an ECG?=
| image2    = Normaal ecg.jpg
[[Image:Normaal ecg.jpg|thumb| An example of a normal ECG. ''Click on the Image for an enlargement'']]
| caption2  = An example of a normal ECG. ''Click on the Image for an enlargement''
}}


Click on the ECG to see an enlargement.
Click on the ECG to see an enlargement.
Where do we look at watching an ECG?
Where do you start when interpreting an ECG?
* top left are the patient's information, name, sex and date of birth
* On the top left are the patient's information, name, sex and date of birth
* at the right of that are below each other the [[heart frequency]], the [[Conduction time intervals (PQ,QRS,QT)|conduction time intervals]] (PQ,QRS,QT/QTc), and the [[cardiac axis]] (P-top axis, QRS axis and T-top axis)
* At the right of that are below each other the [[Frequency]], the [[Conduction|conduction times]] (PQ,QRS,QT/QTc), and the [[heart axis]] (P-top axis, QRS axis and T-top axis)
* farther to the right is the interpretation of the ECG written (this often misses in a 'fresh' ECG, but later the interpretation of the cardiologist or computer will be added)
* Farther to the right is the interpretation of the ECG written (this may be missing in a 'fresh' ECG, but later the interpretation of the cardiologist or computer will be added)
* down left is the 'paper speed' (25mm/s on the horizontal ax), the sensitivity (10mm/mV) and the filter's frequency (40Hz, filters noise from eg. lights)
* Down left is the 'paper speed' (25 mm/s on the horizontal axis), the sensitivity (10mm/mV) and the filter's frequency (40Hz, filters noise from eg. lights).
* finally there is a calibration on the ECG, on the beginning of every lead is a vertical block that shows how high 1mV is. So the height and depth of these signals are a measurement for the voltage. If this is not the set 10mm, there is something wrong with the machine.
* There is a calibration. At the beginning of every lead is a vertical block that shows with what amplitude a 1 mV signal is drawn. So the height and depth of these signals are a measurement for the voltage. If this is not set at 10 mm, there is something wrong with the machine setting.
* further we have the ECG leads themselves of course, what these are will be discussed below.
* Finally we have the ECG leads themselves.These will be discussed below.


Note the lay-out of the paper is for every machine diffrent, but all of the information above can be found somewhere mostly.
Note that the layout is different for each machine, but most machines will show the information above somewhere.
{{clr}}
{{clr}}


=What does the ECG register?=
==What does the ECG register?==
;The electrocardiogram: An electrocardiogram (ECG or EKG) is a register of the heart's electrical activity.
Just like skeletal muscles, heart muscles are electrically stimulated to contract. This stimulation is also called ''activation'' or ''excitation''. Cardiac muscles are electrically charged at rest. The inside of the cell is negatively charged relative to the outside (resting potential). If the cardiac muscle cells are electrically stimulated, they depolarize (the resting potential changes from negative to positive) and contract. The electrical activity of a single cell can be registered as the [[action potential]].
As the electrical impulse spreads through the heart, the electrical field changes continually in size and direction. The ECG is a graph of these electrical cardiac signals.


An ECG is a registration of the heart's electric activity.
==The ECG represents the sum of the action potentials of millions of cardiomyocytes==
Just like skeletal muscles, the heart is electrically stimulated to contract. This stimulation is also called ''activation'' or ''excitation''. Cardiac muscles are electrically charged in rest. The surface of the cell is positively charged relative to the inside (resting potential). If the cardiac muscle cells are electrically stimulated (depolarisation: the outside of the depolarized region is positively charged relative to the inside) and there comes an ~action potential~, the cells contract.
{{multiple image
Because of the spreading of the impulse through the heart, the electric field changes continually in size and direction. The ECG is a graphical visualisation of the electric signals in the heart.
| align    = right
| direction = horizontal
| width    = 315


=Het ECG is een optelsom van de actiepotentiaaltjes van miljoenen cardiomyocyten.=
| image1    = Ion_currents_en.png
[[Image:Hart_cells.png|thumb|Het hart bestaat uit ongeveer 300 biljoen cellen]]
| caption1  = Ion currents of the cardiomyocytes
[[Image:cells_in_rest.png|thumb|In rust zijn hartcellen negatief geladen. Doordat ze door omliggende cellen gedepolariseerd worden, wordt de lading positief en trekken ze samen.]]
 
[[Image:Ion_currents.jpg|thumb|Tijdens het positief worden van de lading stromen natrium-ionen de cel in. Vervolgens gaan calcium-ionen de cel in. Deze calcium-ionen zorgen voor de daadwerkelijke spiercontractie. Als laatste gaan kalium-ionen de cel uit. Tijdens de repolarisatie (herstelfase) worden deze ionstromen weer gecorrigeerd. Op het ECG is een actiepotentiaalgolf die op je af komt te zien als een positieve uitslag. De ECG electrode is hier voorgesteld als een oog.]]
| image2    = Hart_cells_en.png
De individuele [[actiepotentiaal|actiepotentialen]] van de individuele cardiomyocyten worden in feite gemiddeld. Het uiteindelijke signaal is dus een gemiddelde van biljoenen miniscule electrische signalen.
| caption2  = The heart consists of approximately 300 billion cells
 
| image3    = cells_in_rest_en.png
| caption3  = In rest the heart cells are negatively charged. Through the depolarization by surrounding cells they become positively charged and they contract.
}}
{| class="wikitable" border="1" style="float: left"
|-
| align="center" width="800" | {{#widget:Html5media
|url=https://en.ecgpedia.org/images/8/88/Single_cardiomyocyte.mp4
|width=640
|height=360
}}
| rowspan="2" align="center" width="800" | <youtube>j9w1qylp4TY</youtube>
|-
|  width="800"  | <small>This movie shows the contraction of a single (rabbit) heart cell. The glass electrode measures the electrical current in the heart cell (with the[[w:Patch_clamp|patch-clamp method]]). The electrical signal is written in blue and shows the action potential. ''Courtesy of Arie Verkerk and Antoni van Ginneken, AMC, Amsterdam, The Netherlands''.</small>
|}
 
 
The individual [[action potential|action potentials]] of the individual cardiomyocytes are averaged. The final result, which is shown on the ECG, is actually the average of billions of microscopic electrical signals.
 
During the depolarization, sodium ions stream into the cell. Subsequently, the calcium ions stream into the cell. These calcium ions cause the actual muscular contraction.
 
Finally the potassium ions stream out of the cell. During repolarization the ion concentration returns to its precontraction state. On the ECG, an action potential wave coming toward the electrode is shown as a positive (upwards) signal. Here the ECG electrode is represented as an eye.
{{clr}}
{{clr}}


=De electrische ontlading van het hart=
==The electric discharge of the heart==
[[Image:conduction_system.png|thumb]]
[[Image:conduction_system.svg|thumb|450px|left|The conduction system of the heart]]
[[Image:ECG_principle_slow.gif|thumb|De electrische ontlading van het hart, eerst langzaam]]
{| class="wikitable" border="1" style="float: right"
[[Image:ECG_Principle_fast.gif|thumb|De electrische ontlading van het hart, nu sneller]]
|-
'''In de sinusknoop (SA node) zitten pacemakercellen die de hartfrequentie bepalen.'''
|align="center" | {{#widget:Html5media
|url=https://en.ecgpedia.org/images/4/40/Normal_SR_vector.mp4
|width=640
|height=360
}}
|}


'''Eerst depolariseren en contraheren de [[hart|boezems]] (atria), daarna de [[hart|hartkamers]] (ventrikels)'''
'''The sinoatrial node (SA node) contains the fastest physiological pacemaker cells of the heart; therefore, they determine the [[Rate|heart rate]].'''
Het electrische signaal tussen de boezems en hartkamers loopt van de SA knoop, via de atria, naar de AV-knoop (atrioventriculaire overgang) naar de bundel van His en vervolgens naar de linker en rechter bundeltak, die uiteindelijk uitmonden in een fijnvertakt netwerk van Purkinjevezels.
'''First the [[heart|atria]] depolarize and contract. After that the [[heart|ventricles]]''' depolarize and contract.
The electrical signal between the atria and the ventricles goes from the sinus node via the atria to the AV-node (atrioventricular transition) to the His bundle and subsequently to the right and left bundle branches, which end in a dense network of Purkinje fibers.
The depolarization of the heart results in an electrical force which has a direction and magnitude; an electrical vector. This vector changes every millisecond of the depolarization. In the animation vectors for atrial depolarization, ventricular depolarization and ventricular repolarization are shown.
{{clr}}
{{clr}}


=De verschillende golven van het ECG=
==The different ECG waves==
[[Image:PQRS_origin.png|thumb| De oorsprong van de verschillende golven op het ECG]]
[[File:PQRS_origin_en.png|thumb|left|300px|The origin of the different waves on the ECG]]
De [[P_top_morfologie|'''P top''']] onstaat door depolarisatie van de atria. Deze golf begint in de SA-knoop, waarna er geleiding plaatsvind naar de rechter en vervolgens naar de linker atria. Repoolarisatie van de atria wordt normaal gesproken niet waargenomen op een ECG. De repolarisatie valt samen met het QRS-complex en is van een kleine omvang (minder weefsel dan de ventrikels).
{{multiple image
| align    = right
| direction = vertical
| width    = 320
 
| image1    = Epi_endo_en.png
| caption1  = The QRS complex is formed by the sum of the electric avtivity of the inner (endocardial) and the outer (epicardial) cardiomyocytes
 
| image2    = Qrs-shapes.png
| caption2  = Example of the different QRS configurations
}}
The [[P_wave_morphology|'''P wave''']] is the result of the atrial depolarization. This depolarization starts in the SA (sinoatrial) node. The signal produced by pacemaker cells in the SA node is conducted to the right and left atria. Normal atrial repolarization is not visible on the ECG (but can be visible during [[atrial infarction]] and [[pericarditis]]).  


Het [[QRS_morfologie|'''QRS complex''' ]] is een middeling van de depolarisatiegolven van de endomyocardiale (binnenste) en epicardiale (buitenste) spiercellen. Of te wel de depolarisatie van de venrtrikels. Doordat de endomyocardiale cellen net iets eerder epolariseren dan de epicardiale spiercellen, ontstaat het typische QRS patroon.  
The [[QRS_morphology|'''QRS complex''' ]] is the average of the depolarization waves of the inner (endocardial) and outer (epicardial) cardiomyocytes. As the endocardial cardiomyocytes depolarize slightly earlier than the outer layers, a typical QRS pattern occurs (figure).  


[[Image:Epi_endo.jpg|thumb| Het QRS complex ontstaat door een optelsom van de electrische activiteite van de binnenste (endocardiale) en buitenste (epicardiale) cardiomyocyten]]
The [[ST_morphology|'''T wave''']] represents the repolarization of the ventricles. There is no cardiac muscle activity during the T wave.


De [[ST_morfologie|'''T golf''']] ontstaat door repolarisatie van de ventrikelcellen. Tijdens de T golf is er geen spieractiviteit (het hart staat stil).
One heart beat consists of an atrial depolarization --> atrial contraction --> p-wave, ventricular depolarization --> ventricular contraction --> ORS-complex and the resting phase (including the repolarization during the T-wave) between two heart beats.


Éen hartslag omvat een boezemsystole (contractie atria --> p-top), kamersystole (kamer contractie --> ORS-complex) en de rustfase (T-top) tussen twee slagen.
Have a look at this [[http://www-medlib.med.utah.edu/kw/pharm/hyper_heart1.html animation of the heart cycle]]


Zie ook deze [[http://www-medlib.med.utah.edu/kw/pharm/hyper_heart1.html animatie van de hartcyclus]]
The origin of the '''U wave''' is unknown. This wave possibly results from "afterdepolarizations" of the ventricles.


De oorsprong van de '''U golf''' is onbekend. Mogelijk duidt deze golf op "afterdepolarisaties" van de ventrikels.
The letters "Q", "R" and "S" are used to describe the QRS complex
*Q: the first negative deflection after the p-wave. If the first deflection is not negative, the Q is absent.
*R: the positive deflection
*S: the negative deflection after the R-wave
*Small print letters (q, r, s) are used to describe deflections of small amplitude. For example: qRS = small q, tall R, deep S.  
*R`: is used to describe a second R-wave (as in a [[RBBB|right bundle branch block]])
See figure for some examples of this.


De letters QRS worden op verschillende manieren geschreven om verschillende vormen aan te duiden:
{{clr}}
*Q: eerste negatieve deflectie na de p-top. Als die er niet is, is er dus geen Q
*R: positieve deflectie
*S: negatieve deflectei na de R-top


*met kleine letters (q, r, s) worden kleine deflecties aangegeven. Bijvoorbeeld: qRS = kleine q, hoge R, diepe S.
==The history of the ECG==
*R` (uitspraak: r-accent): wordt gebruikt om een tweede R-top aan te geven (bijvoorbeeld bij een rechter bundeltakblok)
A [[A_Concise_History_of_the_ECG| concise history of the ECG]] is presented in a different chapter.
Zie ook enkele voorbeelden op de afdeling rechts.
[[Image:Qrs-shapes.png|thumb| Voorbeelden van de verschillende vormen die het QRS complex kan aannemen]]  
{{clr}}
{{clr}}


=De geschiedenis van het ECG=
==The ECG electrodes==
[[Image:Einthoven.gif|thumb|[[wikipedia:Einthoven|Willem Einthoven (1860-1927), de grondlegger van het huidige ECG]]]]
{{multiple image
[[Image:einthECG1.png|thumb|ECG uit de eerste publicatie van Einthoven. ''Pfügers Archiv maart 1895, pagina 101-123'']]
| align    = right
[[Image:stringgalvanometer.jpg|thumb|Einthoven's snaar-galvanometer, nu in het Science Museum in Londen. De patient moest met handen en voeten in zoutbaden zitten, alwaar de electrodes op waren aangesloten. ''Image van de [http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/conferences/che2004/Landman.pdf IEEE history society]''.]]
| direction = vertical
[[Image:modern_ecg.jpg|thumb|De laatste generatie ECG registratie-apparaten. Zoals deze van [http://www.gehealthcare.com/euen/cardiology/ General Electric]]]
| width    = 200
De geschiedenis van het ECG gaat ver terug.


In '''1843''' beschreef Emil Du bois-Reymond een Duitse fydioloog voor het eerste de "actiepotentiaal" van een spiercontractie. Hij maakte gebruik van een gevoelige galvanometer voor zijn metingen. Hierin zat een spoel met 5 km draad verwerkt. Du Bios Reymond benoemde de verschillende golven: "o" was het stabiele equilibrium en hij was de eerste die de letters p, q, r en s gebruikte. ''Du Bois-Reymond, E. Untersuchungen uber thierische Elektricitat. Reimer, Berlin: 1848.''
| image1    = limb_leads.png
| caption1  = The limb leads


In '''1850''' beschreef M. Hoffa hoe hij onregelmatige contracties van de ventrikels veroorzaakte door hondenharten een electrische schok te geven. ''Hoffa M, Ludwig C. 1850. Einige neue versuche uber herzbewegung. Zeitschrift Rationelle Medizin, 9: 107-144''
| image2    = chest_leads.png
| caption2  = The chest leads
}}


In '''1887''' publiceerde de Engelse fysioloog Augustus D. Waller uit Londen het eerste menselijke electrocardiogram. Hij gebruikte een capillair-electrometer. ''Waller AD. A demonstration on man of electromotive changes accompanying the heart's beat. J Physiol (London) 1887;8:229-234''
Electrical activity going through the heart can be measured by external (skin)electrodes. The electrocardiogram (ECG) registers these activities from electrodes which have been attached onto different places on the body. In total, twelve leads are calculated using ten electrodes.


[[wikipedia:Einthoven|Willem Einthoven]] (1860-1927) introduceerde in 1893 de term 'electrocardiogram'. Hij beschreef in '''1895''' hoe hij een galvanometer gebruikte om de electrische activiteit van het hart op te tekenen. In 1924 heeft hij hiervoor de Nobelprijs gekregen als grondlegger van het huidige ECG. Hij sloot zijn electrodes aan op de patient en liet het electrische verschil tussen twee electrodes uitschrijven door een galvanometer. Wij spreken nog steeds van de afleidingen van Einthoven. De snaar galvanometer (zie Image) werd in zijn tijd geroemd als het eerste instrument dat een klinische implicatie had.
The ten electrodes are:


In 1905 neemt Einthoven het eerste 'telecardiogram' op vanuit het ziekenhuis naar zijn laboratorium 1,5 km verderop.
* '''The four extremity electrodes:'''
** LA - left arm
** RA - right arm
** N - neutral, on the right leg (= electrical earth, or point zero, to which the electrical current is measured)
** F - foot, on the left leg
It makes no difference whether the electrodes are attached proximal or distal on the extremities. ''However'', it is best to be uniform in this. (eg. do not attach an electrode on the left shoulder and one on the right wrist).
 
* '''The six chest electrodes:'''
** V1 - placed in the 4th intercostal space, right of the sternum
** V2 - placed in the 4th intercostal space, left of the sternum
** V3 - placed between V2 and V4
** V4 - placed 5th intercostal space in the nipple line. Official recommendations are to place V4 under the breast in women.<cite>Kligfield</cite>
** V5 - placed between V4 and V6
** V6 - placed in the midaxillary line on the same height as V4 (horizontal line from V4, so not necessarily in the 5th intercostal space)


In 1906 publiceert Einthoven het eerste artikel waarin een serie (afwijkende) ECG bevindingen worden beschreven: linker en rechter ventrikelhypertrofie, linker en rechter atriumdilatatie, de U golf, notching van het QRS comples, ventriculaire extrasystolen, bigemini, boezemflutter en totaal AV blok. ''Einthoven W. Le telecardiogramme. Arch Int de Physiol 1906;4:132-164''
{{clr}}
{{clr}}


=De ECG electrodes=
With the use of these 10 electrodes, 12 leads can be derived. There are 6 extremity leads and 6 precordial leads.
[[Image:ECGelectrodes.jpg|thumb|klik op de Image voor een vergroting]]
===The Extremity Leads===
Elektrische activiteit dat door het hart gaat, kan worden opgevangen door uitwendige (huid)elektroden. Het electrocardiogram (ECG) registreert deze activiteit via deze electroden die op verschillende plaatsen op het lichaam zijn bevestigd. In totaal worden 12 afleidingen berekend met behulp van 10 electrodes.
[[File:ECGafleidingen.jpg|thumb|left|200px]]
The extremity leads are:


De 10 electrodes zijn:
*'''I''' from the right to the left arm
* '''de extremiteitselectrodes:'''
*'''II''' from the right arm to the left leg
** LA - linker arm
*'''III''' from the left arm to the left leg
** RA - rechter arm
An easy rule to remember: lead '''I''' + lead '''III''' = lead '''II'''
** N - neutraal, op het rechter been (= electrisch aarde of nulpunt ten opzichte waarvan de electrische spanning wordt gemeten)
This is done with the use of the height or depth, independent of the wave (QRS, P of T).
** F - voet, op het linker been (feet)
Example: if in lead I, the QrS complex is 3 mm in height and in lead III 9mm, the height of the QRS-complex in lead II is 12mm.
Het maakt niet uit of de electrodes proximaal of distaal op de extremiteiten worden geplakt. Wel mag dit liever niet afgewisseld worden (bv. een electrode op de linker schouder en een op de rechter pols)


* '''de borstelectrodes:'''
Other extremity leads are:
** V1 - geplaatst in de 4e intercostaalruimte rechts van het borstbeen
** V2 - geplaatst in de 4e intercostaalruimte links van het borstbeen
** V3 - geplaatst halverwege tussen V2 en V4
** V4 - geplaatst in de 5e intercostaalruimte in de tepellijn
** V5 - geplaatst halverwege tussen V4 en V6
** V6 - geplaatst in de axillairlijn op dezelfde hoogte als V4


*'''AVL''' points to the left arm
*'''AVR''' points to the right arm
*'''AVF''' points to the feet
The capital A stands for "augmented" and V for "voltage".
(aVR + aVL + aVF = 0)
{{clr}}
{{clr}}


Met behulp van deze 10 electrodes kunnen dus 12 afleidingen uitgeschreven worden. Er zijn 6 extremiteitsafleidingen en 6 voorwandsafleidingen.
===The Chest Leads===
==De extremiteitsafleidingen==
The precordial, or chest leads, '''(V1,V2,V3,V4,V5 and V6)''' 'observe' the depolarization wave in the frontal plane.
[[Image:ECGafleidingen.jpg|thumb]]
De extremiteitsafleidingen zijn:


*'''I''' van rechter naar linker arm
''Example'': V1 is close to the right ventricle and the right atrium. Signals in these areas of the heart have the largest signal in this lead. V6 is the closest to the lateral wall of the left ventricle.
*'''II''' van rechter arm naar linker been
*'''III''' van linker arm naar linker been


Een makkelijk te onthouden ezelsbruggetje: Afleiding '''I''' + Afleiding '''III''' = Afleiding '''II'''
==ECG variants==
Hierbij wordt gebruik gemaakt van de hoogten en/of diepten, onafhankelijk van de golf (QRS, P of T).
Besides the standard 12 lead ECG a couple of variants are in use:
Voorbeeld: is in Afleiding I het QRS complex 3mm hoog, in Afleiding III 9mm, dan zal de hoogte van het QRS-complex in afleiding II 12mm bedragen.
*The '''3 channel ECG''' uses 3 or 4 ECG electrodes. Red is on the right, yellow on the left arm, green on the left leg ('sun shines on the grass') and black on the right leg. These basic leads yield enough information for rhythm-monitoring. For determination of ST elevation, these basic leads are inadequate as there is no lead that gives (ST) information about the anterior wall. ST changes registered during 3-4 channel ECG monitoring should prompt acquisition of a 12 lead ECG.
*The '''5 channel ECG''' uses 4 extremitiy leads and 1 precordial lead. This improves ST segment accuracy, but is still inferior to a 12 lead ECG.  <cite>drew</cite><cite>Klootwijk</cite>
*In '''vector electrocardiography''' the movement of electrical acitivity of the P, QRS and T wave is described. Additional X,Y and Z leads are recorded. Vector electrocardiography is rarely used nowadays, but is sometimes useful in a research setting.
*In '''body surface mapping''' several arrays are used to accurately map the cardiac electrical wavefront as it moves over de body surface. With this information the electrical acitivity of the heart can be calculated. This is sometimes used in a research setting.
==Color coding of the ECG leads==
Two systems for ECG lead color coding are used: the AHA (''American Heart Association'') system and the IEC (''International Electrotechnical Commission'') system:


Daarnaast zijn er electrisch afgeleide afleidingen. Deze hebben als centrum het electrisch gemiddelde van de extremiteitsafleidingen (ongeveer het hart zelf dus).
{| class="wikitable" cellpadding="7"
||
| colspan="2" | AHA (''American Heart Association'')
| colspan="2" | IEC (''International Electrotechnical Commission'')
|-
!| Location
!| Inscription
!| Colour
!| Inscription
!| Colour
|-
|-
| | Right Arm
!| RA
| | White
!|R
| | Red
|-
| | Left Arm
!|LA
| | Black
!|L
| | Yellow
|-
| | Right Leg
!|RL
| | Green
!|N
| | Black
|-
| | Left Leg
!|LL
| | Red
!|F
| | Green
|-
| | Chest
!|V1
| | Brown/Red
!|C1
| | White/Red
|-
| | Chest
!|V2
| | Brown/Yellow
!|C2
| | White/Yellow
|-
| | Chest
!|V3
| | Brown/Green
!|C3
| | White/Green
|-
| | Chest
!|V4
| | Brown/Blue
!|C4
| | White/Brown
|-
| | Chest
!|V5
| | Brown/Orange
!|C5
| | White/Black
|-
| | Chest
!|V6
| | Brown/Purple
!|C6
| | White/Violet
|}


*'''AVL''' wijst naar de Linker arm
==Special Leads==
*'''AVR''' naar de Rechter arm
{{multiple image
*'''AVF''' naar de voeten (Feet)
| align    = left
| direction = horizontal
| width    = 200


De letter a staat voor "augmented" (versterkt) en de letter V voor "voltage".
| image1    = leads_789.png
| caption1  = Leads V7,V8 and V9 can be helpful in the diagnosis of posterior myocardial infarction


(aVR + aVL + aVF = 0)
| image2    = Brugada_lead_placement.png
{{clr}}
| caption2  = Changed lead positions of leads V3 and V5 to increase the sensitiviy to 'catch' a [[Brugada]] pattern on the ECG.
}}
{{multiple image
| align    = right
| direction = vertical
| width    = 200
 
| image1    = E000559.jpg
| caption1  = A patient with atrial fibrillation with a 'Lewis Lead' positioning of the leads. Compared with the normal lead configuration, the atrial signal is enlarged. Although some parts have a 'sawtooth' appearance consistent with atrial flutter, the rhythm is atrial fibrillation as there is a changing pattern in the atrial activity.


==De voorwandsafleidingen==
| image2    = E000557.jpg
De voorwandsafleidingen '''(V1,V2,V3,V4,V5 en V6)''' 'kijken' vanuit hun borstelectrodes naar het electrisch gemiddelde. Dus in feite naar het centrum van het hart.  
| caption2  = The same patient with a normal lead configuration. The rhythm is atrial fibrillation. The atrial activity in lead V1 is organized probably due to a organisation of electrical activity after it enters the right atrial appendage, close to lead V1.
}}
Throughout history extra lead positions have been tried. Most are rarely used in practice, but they can deliver very valuable diagnostic clues in specific cases.
*Leads to improve diagnosis in '''right ventricular en posterior infarction''':
In case of an inferior wall infarct, extra leads may be used:
:::: 1. On a right-sided ECG, V1 and V2 remain on the same place. V3 to V6 are placed on the same place but mirrored on the chest. So V4 is in the middle of the right clavicle. The ECG should be marked as a ''Right-sided ECG''. V4R (V4 but right sided) is a sensitive lead for diagnosing right ventricular infarctions.


''Voorbeeld'': V1 zit vlakbij de rechter kamer en het rechter atrium en signalen vanuit die gebieden geven in deze afleiding de grootste uitslag. V6 zit vlakbij de laterale (=zijkant) van de linker hartkamer, hier worden signalen vanuit de linker hartkamer het best geregistreerd.
:::: 2. Leads V7-V8-V9 can be used to diagnose a posterior infarct. After V6, leads are placed towards the back. See the chapter [[Ischemia]] for other ways of diagnosing posterior infarction.


==Bijzonder afleidingen==
Bij een onderwandinfarct worden soms extra afleidingen gebruikt:
#Bij een zogenaamd '''rechts uitgepoold ECG''' behouden V1 en V2 hun plaats. V3 tm V6 worden op dezelfde plaats gezet, maar dan langs de rechterkant van het borstbeen. Op het ECG moet aangegeven worden dat het om een ''Rechts-ECG'' gaat. V4R (V4 maar dan rechts uitgepoold) is een gevoelige afleiding om een rechterkamerinfarct te diagnostiseren.
#Afleidingen V7-V8-V9 worden gebruikt om een posteriorinfarct aan te tonen. Hierbij wordt doorgepoold ter hoogte van V6 naar de rug. Een posteriorinfarct is meestal ook goed te zien in V2 (maar dan 'op de kop', zie ook het hoofdstuk [[ischemie]], dus deze afleidingen worden zelden gebruikt.


=Technische problemen met het ECG=
*Leads to improve detection of '''atrial rhythm''':
==Draadverwisselingen==
::In wide complex tachycardia, good detection of atrial rhythm and atrio-ventricular dissociation can be very helpful in the diagnosis process. An esophagal ECG electrode placed close to the atria can be helpful. Another, less invasive, method is the '''Lewis Lead'''. This is recorded by changing the limb electrodes, placing the right arm electrode in the second intercostal space and the left arm electrode in the fourth intercostal space, both to the right of the sternum. Furthermore gain is increased to 20mm/mV and paper speed to 50mm/sec.<cite>Lewis1</cite>ß
Het komt nogal eens voor dat één van de afleidingsdraden niet goed aangesloten wordt. Het is handig om dit te kunnen herkennen, want anders kan je verkeerde conclusies trekken.  


Denk bij een 'vreemd' ECG daarom aan een dradenverwisseling. Een van de meest voorkomende fouten is het verwisselen van de linker en rechter arm. Dit uit zich in een negatieve afleiding in I. Dit zou ook door een rechter asdraai kunnen komen, maar dat is heel zeldzaam.
*Lead positioning to enhance detection of [[Brugada]] syndrome
{{clr}}


Veel voorkomende verwisselingen zijn, omkering van:
==Ladder diagram==
*rechter en linker arm electroden;
[[File:Ladder_diagram.svg|thumb|right|A ladder diagram is a diagram that shows the presumed origin of impulse formation and conduction in the heart. A = atrial, AV = AV node, V = ventricles]]
**omkering van afleiding II en III
A ladder diagram is a diagram to explain arrhythmias. The figure shows a simple ladder diagram for normal sinus rhythm, followed by av-nodal extrasystole. The origin of impulse formation (sinus node for the first two beats and AV junction for the third beat) and the conduction in the heart are shown.
**omkering van de afleingen aVR en aVL
<br /><br />
*linker arm en linker been:
<br /><br />
**omkering van afleiding I en II
<br /><br />
**omkering van afleiding aVF en aVF
<br /><br />
**inversie van sfleiding III
<br /><br />
*rechter arm en linker been:
<br /><br />
**inversie va afleiding I, II en III
**omkering van afleidingen aVR en aVF


Men kan draadverwisseling en [[wikipedia:Dextrocardia|dextrocardie]] van elkaar onderscheiden door eveneens naar de precordiale afleidingen te kijken. Dextrocardia toont R-golf inversie i.t.t. omkering van de electroden.
==Technical Problems==


==Storing==
Also read the chapter about [[Technical Problems]]. That will help you recognize electrical disturbances and lead reversals.
*Bewegingsartefacten
*Tremor
*Electrische storing
*Verkeerde filter-instelling


=Externe links=
{{box|
*[http://www.ecglibrary.com/ecghist.html Een uitgebreide geschiedenis van het ECG]
==References==
<biblio>
#Dubois Du Bois-Reymond, E. ''Untersuchungen über thierische Elektricität''. Reimer, Berlin: 1848.
#Hoffa Hoffa M, Ludwig C. 1850. ''Einige neue versuche uber herzbewegung''. Zeitschrift Rationelle Medizin, 9: 107-144
#Waller Waller AD. ''A demonstration on man of electromotive changes accompanying the heart's beat.'' J Physiol (London) 1887;8:229-234
#Einthoven Einthoven W. ''Le telecardiogramme''. Arch Int de Physiol 1906;4:132-164
#Einthoven2 Einthoven W. ''Über die Form des menschlichen Electrocardiogramms''. Pfügers Archiv maart 1895, pagina 101-123
#Marey Marey EJ. ''Des variations electriques des muscles et du couer en particulier etudies au moyen de l'electrometre de M Lippman.'' Compres Rendus Hebdomadaires des Seances de l'Acadamie des sciences 1876;82:975-977 
#Marquez pmid=12177632
#Hurst pmid=9799216
#Kligfield pmid=17322457
#Lewis1 pmid=20022196
</biblio>
}}


[[nl:Grondbeginselen]]
[[nl:Grondbeginselen]]
[[Category:ECG Course]]

Latest revision as of 21:17, 14 January 2021

«Introduction Step 1: Rhythm»


Author(s) I.A.C. van der Bilt, MD
Moderator I.A.C. van der Bilt, MD
Supervisor
some notes about authorship

How do I begin to read an ECG?

A short ECG registration of normal heart rhythm (sinus rhythm)
An example of a normal ECG. Click on the Image for an enlargement

Click on the ECG to see an enlargement. Where do you start when interpreting an ECG?

  • On the top left are the patient's information, name, sex and date of birth
  • At the right of that are below each other the Frequency, the conduction times (PQ,QRS,QT/QTc), and the heart axis (P-top axis, QRS axis and T-top axis)
  • Farther to the right is the interpretation of the ECG written (this may be missing in a 'fresh' ECG, but later the interpretation of the cardiologist or computer will be added)
  • Down left is the 'paper speed' (25 mm/s on the horizontal axis), the sensitivity (10mm/mV) and the filter's frequency (40Hz, filters noise from eg. lights).
  • There is a calibration. At the beginning of every lead is a vertical block that shows with what amplitude a 1 mV signal is drawn. So the height and depth of these signals are a measurement for the voltage. If this is not set at 10 mm, there is something wrong with the machine setting.
  • Finally we have the ECG leads themselves.These will be discussed below.

Note that the layout is different for each machine, but most machines will show the information above somewhere.

What does the ECG register?

The electrocardiogram
An electrocardiogram (ECG or EKG) is a register of the heart's electrical activity.

Just like skeletal muscles, heart muscles are electrically stimulated to contract. This stimulation is also called activation or excitation. Cardiac muscles are electrically charged at rest. The inside of the cell is negatively charged relative to the outside (resting potential). If the cardiac muscle cells are electrically stimulated, they depolarize (the resting potential changes from negative to positive) and contract. The electrical activity of a single cell can be registered as the action potential. As the electrical impulse spreads through the heart, the electrical field changes continually in size and direction. The ECG is a graph of these electrical cardiac signals.

The ECG represents the sum of the action potentials of millions of cardiomyocytes

Ion currents of the cardiomyocytes
The heart consists of approximately 300 billion cells
In rest the heart cells are negatively charged. Through the depolarization by surrounding cells they become positively charged and they contract.
<youtube>j9w1qylp4TY</youtube>
This movie shows the contraction of a single (rabbit) heart cell. The glass electrode measures the electrical current in the heart cell (with thepatch-clamp method). The electrical signal is written in blue and shows the action potential. Courtesy of Arie Verkerk and Antoni van Ginneken, AMC, Amsterdam, The Netherlands.


The individual action potentials of the individual cardiomyocytes are averaged. The final result, which is shown on the ECG, is actually the average of billions of microscopic electrical signals.

During the depolarization, sodium ions stream into the cell. Subsequently, the calcium ions stream into the cell. These calcium ions cause the actual muscular contraction.

Finally the potassium ions stream out of the cell. During repolarization the ion concentration returns to its precontraction state. On the ECG, an action potential wave coming toward the electrode is shown as a positive (upwards) signal. Here the ECG electrode is represented as an eye.

The electric discharge of the heart

The conduction system of the heart

The sinoatrial node (SA node) contains the fastest physiological pacemaker cells of the heart; therefore, they determine the heart rate. First the atria depolarize and contract. After that the ventricles depolarize and contract. The electrical signal between the atria and the ventricles goes from the sinus node via the atria to the AV-node (atrioventricular transition) to the His bundle and subsequently to the right and left bundle branches, which end in a dense network of Purkinje fibers. The depolarization of the heart results in an electrical force which has a direction and magnitude; an electrical vector. This vector changes every millisecond of the depolarization. In the animation vectors for atrial depolarization, ventricular depolarization and ventricular repolarization are shown.

The different ECG waves

The origin of the different waves on the ECG
The QRS complex is formed by the sum of the electric avtivity of the inner (endocardial) and the outer (epicardial) cardiomyocytes
Example of the different QRS configurations

The P wave is the result of the atrial depolarization. This depolarization starts in the SA (sinoatrial) node. The signal produced by pacemaker cells in the SA node is conducted to the right and left atria. Normal atrial repolarization is not visible on the ECG (but can be visible during atrial infarction and pericarditis).

The QRS complex is the average of the depolarization waves of the inner (endocardial) and outer (epicardial) cardiomyocytes. As the endocardial cardiomyocytes depolarize slightly earlier than the outer layers, a typical QRS pattern occurs (figure).

The T wave represents the repolarization of the ventricles. There is no cardiac muscle activity during the T wave.

One heart beat consists of an atrial depolarization --> atrial contraction --> p-wave, ventricular depolarization --> ventricular contraction --> ORS-complex and the resting phase (including the repolarization during the T-wave) between two heart beats.

Have a look at this [animation of the heart cycle]

The origin of the U wave is unknown. This wave possibly results from "afterdepolarizations" of the ventricles.

The letters "Q", "R" and "S" are used to describe the QRS complex

  • Q: the first negative deflection after the p-wave. If the first deflection is not negative, the Q is absent.
  • R: the positive deflection
  • S: the negative deflection after the R-wave
  • Small print letters (q, r, s) are used to describe deflections of small amplitude. For example: qRS = small q, tall R, deep S.
  • R`: is used to describe a second R-wave (as in a right bundle branch block)

See figure for some examples of this.


The history of the ECG

A concise history of the ECG is presented in a different chapter.

The ECG electrodes

The limb leads
The chest leads

Electrical activity going through the heart can be measured by external (skin)electrodes. The electrocardiogram (ECG) registers these activities from electrodes which have been attached onto different places on the body. In total, twelve leads are calculated using ten electrodes.

The ten electrodes are:

  • The four extremity electrodes:
    • LA - left arm
    • RA - right arm
    • N - neutral, on the right leg (= electrical earth, or point zero, to which the electrical current is measured)
    • F - foot, on the left leg

It makes no difference whether the electrodes are attached proximal or distal on the extremities. However, it is best to be uniform in this. (eg. do not attach an electrode on the left shoulder and one on the right wrist).

  • The six chest electrodes:
    • V1 - placed in the 4th intercostal space, right of the sternum
    • V2 - placed in the 4th intercostal space, left of the sternum
    • V3 - placed between V2 and V4
    • V4 - placed 5th intercostal space in the nipple line. Official recommendations are to place V4 under the breast in women.[1]
    • V5 - placed between V4 and V6
    • V6 - placed in the midaxillary line on the same height as V4 (horizontal line from V4, so not necessarily in the 5th intercostal space)


With the use of these 10 electrodes, 12 leads can be derived. There are 6 extremity leads and 6 precordial leads.

The Extremity Leads

ECGafleidingen.jpg

The extremity leads are:

  • I from the right to the left arm
  • II from the right arm to the left leg
  • III from the left arm to the left leg

An easy rule to remember: lead I + lead III = lead II This is done with the use of the height or depth, independent of the wave (QRS, P of T). Example: if in lead I, the QrS complex is 3 mm in height and in lead III 9mm, the height of the QRS-complex in lead II is 12mm.

Other extremity leads are:

  • AVL points to the left arm
  • AVR points to the right arm
  • AVF points to the feet

The capital A stands for "augmented" and V for "voltage".

(aVR + aVL + aVF = 0)

The Chest Leads

The precordial, or chest leads, (V1,V2,V3,V4,V5 and V6) 'observe' the depolarization wave in the frontal plane.

Example: V1 is close to the right ventricle and the right atrium. Signals in these areas of the heart have the largest signal in this lead. V6 is the closest to the lateral wall of the left ventricle.

ECG variants

Besides the standard 12 lead ECG a couple of variants are in use:

  • The 3 channel ECG uses 3 or 4 ECG electrodes. Red is on the right, yellow on the left arm, green on the left leg ('sun shines on the grass') and black on the right leg. These basic leads yield enough information for rhythm-monitoring. For determination of ST elevation, these basic leads are inadequate as there is no lead that gives (ST) information about the anterior wall. ST changes registered during 3-4 channel ECG monitoring should prompt acquisition of a 12 lead ECG.
  • The 5 channel ECG uses 4 extremitiy leads and 1 precordial lead. This improves ST segment accuracy, but is still inferior to a 12 lead ECG. [2][3]
  • In vector electrocardiography the movement of electrical acitivity of the P, QRS and T wave is described. Additional X,Y and Z leads are recorded. Vector electrocardiography is rarely used nowadays, but is sometimes useful in a research setting.
  • In body surface mapping several arrays are used to accurately map the cardiac electrical wavefront as it moves over de body surface. With this information the electrical acitivity of the heart can be calculated. This is sometimes used in a research setting.

Color coding of the ECG leads

Two systems for ECG lead color coding are used: the AHA (American Heart Association) system and the IEC (International Electrotechnical Commission) system:

AHA (American Heart Association) IEC (International Electrotechnical Commission)
Location Inscription Colour Inscription Colour
Right Arm RA White R Red
Left Arm LA Black L Yellow
Right Leg RL Green N Black
Left Leg LL Red F Green
Chest V1 Brown/Red C1 White/Red
Chest V2 Brown/Yellow C2 White/Yellow
Chest V3 Brown/Green C3 White/Green
Chest V4 Brown/Blue C4 White/Brown
Chest V5 Brown/Orange C5 White/Black
Chest V6 Brown/Purple C6 White/Violet

Special Leads

Leads V7,V8 and V9 can be helpful in the diagnosis of posterior myocardial infarction
Changed lead positions of leads V3 and V5 to increase the sensitiviy to 'catch' a Brugada pattern on the ECG.
A patient with atrial fibrillation with a 'Lewis Lead' positioning of the leads. Compared with the normal lead configuration, the atrial signal is enlarged. Although some parts have a 'sawtooth' appearance consistent with atrial flutter, the rhythm is atrial fibrillation as there is a changing pattern in the atrial activity.
The same patient with a normal lead configuration. The rhythm is atrial fibrillation. The atrial activity in lead V1 is organized probably due to a organisation of electrical activity after it enters the right atrial appendage, close to lead V1.

Throughout history extra lead positions have been tried. Most are rarely used in practice, but they can deliver very valuable diagnostic clues in specific cases.

  • Leads to improve diagnosis in right ventricular en posterior infarction:

In case of an inferior wall infarct, extra leads may be used:

1. On a right-sided ECG, V1 and V2 remain on the same place. V3 to V6 are placed on the same place but mirrored on the chest. So V4 is in the middle of the right clavicle. The ECG should be marked as a Right-sided ECG. V4R (V4 but right sided) is a sensitive lead for diagnosing right ventricular infarctions.
2. Leads V7-V8-V9 can be used to diagnose a posterior infarct. After V6, leads are placed towards the back. See the chapter Ischemia for other ways of diagnosing posterior infarction.


  • Leads to improve detection of atrial rhythm:
In wide complex tachycardia, good detection of atrial rhythm and atrio-ventricular dissociation can be very helpful in the diagnosis process. An esophagal ECG electrode placed close to the atria can be helpful. Another, less invasive, method is the Lewis Lead. This is recorded by changing the limb electrodes, placing the right arm electrode in the second intercostal space and the left arm electrode in the fourth intercostal space, both to the right of the sternum. Furthermore gain is increased to 20mm/mV and paper speed to 50mm/sec.[4
  • Lead positioning to enhance detection of Brugada syndrome


Ladder diagram

A ladder diagram is a diagram that shows the presumed origin of impulse formation and conduction in the heart. A = atrial, AV = AV node, V = ventricles

A ladder diagram is a diagram to explain arrhythmias. The figure shows a simple ladder diagram for normal sinus rhythm, followed by av-nodal extrasystole. The origin of impulse formation (sinus node for the first two beats and AV junction for the third beat) and the conduction in the heart are shown.











Technical Problems

Also read the chapter about Technical Problems. That will help you recognize electrical disturbances and lead reversals.


References

  1. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, van Herpen G, Kors JA, Macfarlane P, Mirvis DM, Pahlm O, Rautaharju P, Wagner GS, American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology, American College of Cardiology Foundation, Heart Rhythm Society, Josephson M, Mason JW, Okin P, Surawicz B, and Wellens H. Recommendations for the standardization and interpretation of the electrocardiogram: part I: The electrocardiogram and its technology: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation. 2007 Mar 13;115(10):1306-24. DOI:10.1161/CIRCULATIONAHA.106.180200 | PubMed ID:17322457 | HubMed [Kligfield]
  2. Rodrigues de Holanda-Miranda W, Furtado FM, Luciano PM, and Pazin-Filho A. Lewis lead enhances atrial activity detection in wide QRS tachycardia. J Emerg Med. 2012 Aug;43(2):e97-9. DOI:10.1016/j.jemermed.2009.08.057 | PubMed ID:20022196 | HubMed [Lewis1]
  3. Du Bois-Reymond, E. Untersuchungen über thierische Elektricität. Reimer, Berlin: 1848.

    [Dubois]
  4. Hoffa M, Ludwig C. 1850. Einige neue versuche uber herzbewegung. Zeitschrift Rationelle Medizin, 9: 107-144

    [Hoffa]
  5. Waller AD. A demonstration on man of electromotive changes accompanying the heart's beat. J Physiol (London) 1887;8:229-234

    [Waller]
  6. Einthoven W. Le telecardiogramme. Arch Int de Physiol 1906;4:132-164

    [Einthoven]
  7. Einthoven W. Über die Form des menschlichen Electrocardiogramms. Pfügers Archiv maart 1895, pagina 101-123

    [Einthoven2]
  8. Marey EJ. Des variations electriques des muscles et du couer en particulier etudies au moyen de l'electrometre de M Lippman. Compres Rendus Hebdomadaires des Seances de l'Acadamie des sciences 1876;82:975-977

    [Marey]
  9. Márquez MF, Colín L, Guevara M, Iturralde P, and Hermosillo AG. Common electrocardiographic artifacts mimicking arrhythmias in ambulatory monitoring. Am Heart J. 2002 Aug;144(2):187-97. DOI:10.1067/mhj.2002.124047 | PubMed ID:12177632 | HubMed [Marquez]
  10. Hurst JW. Naming of the waves in the ECG, with a brief account of their genesis. Circulation. 1998 Nov 3;98(18):1937-42. DOI:10.1161/01.cir.98.18.1937 | PubMed ID:9799216 | HubMed [Hurst]
All Medline abstracts: PubMed | HubMed