Myocardial Infarction

From ECGpedia
Revision as of 13:42, 3 April 2007 by Vdbilt (talk | contribs)
Jump to navigation Jump to search
Accuracy dispute This article or section is currently being developed or reviewed.
Some statements may be disputed, incorrect or biased.

Myocardial Ischemia

Ischemia occurs when part of the heartmuscle, the myocardium, is deprived form oxygen and nutrients. Common causes of ischemia are:

  • Narrowing or obstruction of a coronary artery.
  • A fast rhythm disturbance, causing a disbalance in supply and demand of energy.

A short period of ischemia causes reversibele effects: The heartcells will be able to recover. When the ep[isode of ischemia lasts for a longer period of time, heartmuscle cells will die. This is called a heart attack or myocardial infarction. That is why it is critical to recognize ischemia on the ECG in an early stage.

Severe ischemia will reuslts in ECG changes within minutes. While the ischemia lasts, sverela ECG changes will occur and disappear again. Therefore, it can be difficut to estimate the duration of the ischemia on the ECG, which is crucial for adequate treatment.

Signs and symptoms of myocardial ischemia:

  • Crushing pain on the chest (angina pectoris), behind the sternum, often radiating to the lower jaw or the left arm
  • Fear of dying
  • Nausea
  • Shock (manifesting as paleness, low blood pressure, fast weak pulse) shock
  • Rhythm dysturbances (in particular increasing prevalnce of ventricluar ectopia, ventricular tachycardia, AV block)

Risk assessment of ischemia

The narrowing of the coronary artery leading to a myocardial infarction, usually develops over several years. An increased risk of myocardial infarction can be estimated using SCORE system which is developed by the European Society of cardiology (ESC). As shown in the figue, the most important risk factors for myocardial infarction are:

  • Male sexe
  • Smoking
  • Hypertension
  • Diabetes Mellitus
  • Hypercholesterolemia

An exercise test such as a bicycle or treadmilltest, may be usefull in detecting myocardial ischemia after exercise.[1] In such a test, a continuous ECG registration is performed during exercise. The ST-segment, blood pressure asnd clinical status of the patient (i.e. chest complaints) are monitorered during and after the test.

An excersize test is positive for myocardial ischemia when the following criteria are met:

  • Horizontal or downsloping ST-depression of > 1mm, 60 or 80ms after the J-point
  • ST elevation of > 1.0 mm


Diagnosis of myocardial infarction

The diagnosis of acute myocardial infarction is not only based on the ECG. A myocardial is defined as:[2]

  • Heartenzymes (CKMB or Troponin T) are elevated in the blood AND
  • One of the following crietria are met:
    • The patient has typical complaints
    • The ECG shows toont ST elevation or depression
    • pathologische Q golven develop on the ECG
    • A coronary intervention had been performed (such as stent placement)

So detection of elevated serum heartenzymes is more important than ECG changes. However, the heartenzymes can only be detected in the serum 5-7 hours after the onset of the myocardial infarction. So especially in the first few hours after the myocardial infarction the ECG can be very usefull.

Development of the ECG during persistent ischemia

The evolution of an infarct on the ECG. ST elevation, Q wave formation, T wave inversion, normalisation with a persistent Q wave

The cardiomyocytes in the subendocardial layers are especcially vulnerable for a decreased perfusion. Subendocardial ischemia manifests as ST depression and is usually reversible. In a myocardial infarction transmural ischemia develops.

In the first hours and days after the onset of a myocardial infarction, several changes can be observed on the ECG. First, large peaked T waves (or hyperacute T waves), then ST elevation, thennegative T waves and finally pathological Q waves develop.

Evolution of the ECG during a myocardial infarct
see figure change
minutes not in figure

b

hyperacute T waves (peaked T waves)

ST-elevation

hours c

d

ST-elevation, with terminal negative T wave

negative T wave (these can last for months)

days e pathological Q waves


The location of the infarct

An overview of the coronary arteries. LM = 'Left Main' = mainstem; LAD = 'Left Anterior Descending' artery; RCX = Ramus Circumflexus; RCA = 'Right Coronary Artery'.
Overview of the seperate ECG leads. The lead with ST elevation 'highlights' the infarct. An infarction of the inferior wall will result in ST elevation in leads II, III and AVF. A lateral wall infarct results in ST elevation in leads I and AVL. An Anterior wall infarct results in ST-elevation in the precordial leads.
The Left Anterior Descending (LAD) coronary artery is the most important coronary artery. On this mercatorprojection of the heart, the darkblue area is supplied by blood by the LAD.

The heartmuscle itself can is very limited in its capacity to extract oxygen in the blood that is being pumped. Only the inner layers (the endocardium) profit from this oxygenrich blood. The outer layers of the heart (the epicardium) are dependent on the coronary arteries for the supply pf oxygen and nutrients. Met behulp van het ECG is te zien welk kransslagvat is afgesloten. Dit is van belang omdat de gevolgen van bijvoorbeeld een voorwandinfarct en een onderwandinfarct verschillen: de voorwand levert de belangrijkste bijdrage aan de pompfunctie en uitval zal dus lijden tot een bloeddrukdaling en hartslagversnelling en op de lange termijn tot hartfalen. Een onderwandinfarct gaat vaak gepaard met een polsvertraging doordat de sinusknooparterie te weinig doorbloed wordt, op de lange termijn is het effect op de conditie minder groot omdat de bijdrage van de onderwand aan de pompfunctie minder is.

Het hart wordt door de rechter en linker coronair vaten voorzien van zuurstof en nutrienten. Het linker coronairvat (de hoofdstam of LM, left main) splits zich in de left anterior descending artery (LAD) en de ramus circumflexus (RCX). De rechter coronair arterie (RCA) voedt de ramus descendens posterior (RDP). Bij 20% van de bevolking wordt de ramus descendens posterior door de arteria circumflexa wordt gevoed. Dit noemt men een links dominant hart.

Hieronder volgt een opsomming van de verschillende infarctvarianten. Veel voorkomend zijn het voorwandinfarct (LAD), het onderwandinfarct (meestal RCA) en het infero-postero-lateraalinfarct (vaak RCX).


Help with the localisation of a myocardial infarct
localisation ST elevation Reciproke ST depression coronary artery
anterior wall (anterior) V1-V6 None LAD
septal V1-V4, disappearance of septum Q in leads V5,V6 none LAD
lateral I, aVL, V5, V6 II,III, aVF RCX or MO
inferior (inferior) II, III, aVF I, aVL RCA (80%) or RCX (20%)
posterior (posterior) V7, V8, V9 high R in V1-V3 with ST depression V1-V3 > 2mm (mirror view) RCX
right ventricle V1, V4R I, aVL RCA


The localisation of the occlusion can be adequately visualized using a coronary angiogram (CAG). On the CAG report, the place of the occlusion is often graded with a number (for example LAD(7)) using the classification of the American Heart Association.[3]

Anterior wall

ECG-characteristics:[4]

ST-elevation in leads V1-V6, I en aVL. Maximale elevatie in V3, maximale depressie in III
later: pathologische Q in de precordiale afleidingen V2 t/m V4-V5
Een voorbeeld van een acuut voorwandinfarct. ST elevatie in I, AVL en V2-V5. Reciproke depressies in de onderwandsafleidingen (II,III,AVF)
Anterolateraal infarct door occlusie van de LAD.
Een 2 weken oud voorwandinfarct met beginnende Q's in V2-V4 en persisterende ST elevatie, mogelijk als teken van aneurysma-vorming

Omvat het voorste (anterior) deel van het hart en een deel van het kamerseptum. Wordt door de LAD van bloed voorzien.

Septal

QS in V1 en V2. Later verdwijnt de septum-Q in V5 en V6

Omvat het kamerseptum. Deze wordt door de septale takken van de LAD van bloed voorzien.

Lateral

ST elevatie in I, aVL, V5 en V6

Omvat de laterale zijde van de linkerkamer (linker zijkant van het hart). Deze wordt door de RCX of de MO van bloed voorzien. De MO, de marginalis obtusis is een zijtak die tussen de LAD en de RCX loopt. Bij een lateraal infarct bevindt de maximale ST elevatie zich in V7 en de maximale depressie zich in V2. [4]

Antero-lateral

AMI Anterolateral.png
ST-elevatie in de precordiale afleidingen V2-V6 

Later negatieve T golven en Q's in I, aVL, V5 en V6.

Inferior wall

ST elevatie in II, III en aVF

Dit deel (inferior) rust op het diafragma en wordt bij 80% van de patienten door rechter coronair-arterie (RCA) van bloed voorzien, bij de overige 20% komt het bloed uit de circumflex (RCX).

Een voorbeeld van een onderwandinfarct.

Een RCA afsluiting kan zich onderscheiden van een RCX afsluiting op het ECG: bij een RCA afsluiting is er vaak depressie in I en aVL en is de ST elevatie in III groter dan in II.

Posterior wall

Hoge R-toppen met ST-depressie in V1-V3. 
Posteriorinfarct caused by occlusion of the RCA

De achterwand (posterior) wordt meestal door de RCA van bloed voorzien. Omdat er normaal gesproken geen ECG-afleidingen naar de achterwand kijken, zijn er normaal ook geen afleidingen waar de ST elevatie te zien is die hier bij hoort. De ST depressies in V1-V3 zijn dus eigenlijk gespiegelde ST elevaties en de hoge R-toppen weerspiegelen de Q-golven van het infarct. Om toch zeker te zijn dat het om een posterior-infarct gaat wordt er wel eens doorgepoold met V7, V8 en V9. Deze afleidingen worden dan horizontaal vanaf V6 doorgepoold naar de rug en tonen vaak wel de ST elevatie bij een posterior-infarct.

Right ventricle

ST-elevation >1 mm in lead V4 right
ST elevation in lead V1

Can be seen after a proximal occlusion of the RCA.

V4 right is located at the same place as lead V4, but is loacted on the right side of the patient. This means it is placed under the right nipple instead of the left. This increases the sensitivity of detecting right ventricle infracts.

Atrial infarct

In ongeveer 10% van de infarctpatiënten zijn er aanwijzingen voor een atriaal infarct. Een atriaal infarct kan zich uiten in atriale ritmestoornissen: boezemfibrilleren / boezemritme. Omdat de atria hemodynamisch van ondergeschikt belangrijk zijn, zijn de consequenties van een atriaal infarct meestal beperkt (en daardoor wordt het ook meestal over het hoofd gezien).

Op het ECG uit een atriaal infarct zich dus door een ritmeverandering en / of verandering van het P-Ta segment (soms PTA (P - atriale T) segment genoemd of PR of PQ of PTp (P - T top van P golf) segment)[5]. Dit is het stukje tussen de p-top en de q (NB in angelsaksische literatuur wordt dus PR segment gezegd, maar dit reikt tot aan de Q en niet tot aan de R). Zoals het ST segment een infarct aangeeft in de ventrikel, geeft het P-Ta segment een infarct aan van de boezems.

Diagnostische criteria voor een atriaal infarct [6]:

  • P-Ta elevatie >0.5mm in V5 en V6 met reciproke depressie in V1 en V2
  • P-Ta elevatie >0.5mm in I en depressie in II en III
  • >1.5mm P-Ta depressie in precordiale afleidingen
  • >1.2mm P-Ta depressie in I,II of III in combinatie met atriale aritmiën

Er zijn meerdere diagnostische criteria in omloop en dit is een voorbeeld. Een belangrijke differentiaal diagnose van PTa segment elevatie of depressie is pericarditis.

Infarct diagnosis in LBBB

Bij een LBTB is de infarctdiagnostiek heel moeilijk, omdat de ST segmenten altijd afwijkend zijn bij een LBTB. Een nieuw ontstaan linker bundeltakblok is een sterk argument dat het er sprake is van een myocardinfarct, maar vaak is er geen oud ECG voorhanden. De criteria (van Sgarbossa [7]) die wel gebruikt kunnen worden bij een LBTB ECG zijn:

  • ST elevatie > 1mm in afleidingen met een positief QRS complex (concordante ST deviatie) (score 5)
  • ST depressie > 1 mm in V1-V3 (discordante ST deviatie) (score 3)
  • ST elevatie > 5 mm in afleidingen met een negatief QRS complex (discordante ST deviatie) (score 2)

Bij een score-som van 3 hebben deze criteria een specificiteit van 90%.

References

  1. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O'Reilly MG, Winters WL Jr, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC Jr, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002 Oct 1;106(14):1883-92. DOI:10.1161/01.cir.0000034670.06526.15 | PubMed ID:12356646 | HubMed [accexercise]
  2. Alpert JS, Thygesen K, Antman E, and Bassand JP. Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000 Sep;36(3):959-69. DOI:10.1016/s0735-1097(00)00804-4 | PubMed ID:10987628 | HubMed [Alpert]
  3. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, and Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975 Apr;51(4 Suppl):5-40. DOI:10.1161/01.cir.51.4.5 | PubMed ID:1116248 | HubMed [AHACAG]
  4. Wung SF and Kahn DY. A quantitative evaluation of ST-segment changes on the 18-lead electrocardiogram during acute coronary occlusions. J Electrocardiol. 2006 Jul;39(3):275-81. DOI:10.1016/j.jelectrocard.2005.10.007 | PubMed ID:16777513 | HubMed [Wung]
  5. ABILDSKOV JA. The atrial complex of the electrocardiogram. Am Heart J. 1959 Jun;57(6):930-41. DOI:10.1016/0002-8703(59)90303-5 | PubMed ID:13649561 | HubMed [Abildskov]
  6. LIU CK, GREENSPAN G, and PICCIRILLO RT. Atrial infarction of the heart. Circulation. 1961 Mar;23:331-8. DOI:10.1161/01.cir.23.3.331 | PubMed ID:13762787 | HubMed [Liu]
  7. Sgarbossa EB. Value of the ECG in suspected acute myocardial infarction with left bundle branch block. J Electrocardiol. 2000;33 Suppl:87-92. DOI:10.1054/jelc.2000.20324 | PubMed ID:11265742 | HubMed [LBTB]
  8. Menown IB, Mackenzie G, and Adgey AA. Optimizing the initial 12-lead electrocardiographic diagnosis of acute myocardial infarction. Eur Heart J. 2000 Feb;21(4):275-83. DOI:10.1053/euhj.1999.1748 | PubMed ID:10653675 | HubMed [Menown]

All Medline abstracts: PubMed | HubMed